Sustainable aquaculture and aquatic resources management

RSS Journal of Fish Diseases

Wiley Online Library : Journal of Fish Diseases

Latest posts

Isolation of infectious microalga Prototheca wickerhamii from a carp (Cyprinus carpio) – a first confirmed case report of protothecosis in a fish

Published on 16/3/2017
Protothecosis is a rare infection caused by environmentally ubiquitous achlorophyllic microalgae of the genus Prototheca. Here, we describe a first case of protothecosis in a carp (Cyprinus carpio), which is at the same time the first case of protothecosis in a fish, confirmed by phenotype- and molecular-based methods, including PCR sequencing of the rDNA cluster and protein profiling using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

Development and use of an Arctic charr cell line to study antiviral responses at extremely low temperatures

Published on 6/3/2017
Arctic charr (Salvelinus alpinus) are the northernmost distributed freshwater fish and can grow at water temperatures as low as 0.2 °C. Other teleost species have impaired immune function at temperatures that Arctic charr thrive in, and thus, charr may maintain immune function at these temperatures. In this study, a fibroblastic cell line, named ACBA, derived from the bulbus arteriosus (BA) of Arctic charr was developed for use in immune studies at various temperatures. ACBA has undergone more than forty passages at 18 °C over 3 years, while showing no signs of senescence-associated β-galactosidase activity and producing nitric oxide. Remarkably, ACBA cells survived and maintained some mitotic activity even at 1 °C for over 3 months. At these low temperatures, ACBA also continued to produce MH class I proteins. After challenge with poly I:C, only antiviral Mx proteins were induced while MH proteins remained constant. When exposed to live viruses, ACBA was shown to permit viral infection and replication of IPNV, VHSV IVa and CSV at 14 °C. Yet at the preferred temperature of 4 °C, only VHSV IVa was shown to replicate within ACBA. This study provides evidence that Arctic charr cells can maintain immune function while also resisting infection with intracellular pathogens at low temperatures.

Ca. Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Salmon Gill Pox Virus transmit horizontally in Atlantic salmon held in fresh water

Published on 6/3/2017
Elucidation of the role of infectious agents putatively involved in gill disease is commonly hampered by the lack of culture systems for these organisms. In this study, a farmed population of Atlantic salmon pre-smolts, displaying proliferative gill disease with associated Candidatus Branchiomonas cysticola, Ca. Piscichlamydia salmonis and Atlantic salmon gill pox virus (SGPV) infections, was identified. A subpopulation of the diseased fish was used as a source of waterborne infection towards a population of naïve Atlantic salmon pre-smolts. Ca. B. cysticola infection became established in exposed naïve fish at high prevalence within the first month of exposure and the bacterial load increased over the study period. Ca. P. salmonis and SGPV infections were identified only at low prevalence in exposed fish during the trial. Although clinically healthy, at termination of the trial the exposed, naïve fish displayed histologically visible pathological changes typified by epithelial hyperplasia and subepithelial inflammation with associated bacterial inclusions, confirmed by fluorescent in situ hybridization to contain Ca. B. cysticola. The results strongly suggest that Ca. B. cysticola infections transmit directly from fish to fish and that the bacterium is directly associated with the pathological changes observed in the exposed, previously naïve fish.

A fluorescence-based assay for in vitro screening of Saprolegnia inhibitors

Published on 2/3/2017
The incidence of fish pathogenic oomycetes, Saprolegnia, has increased significantly in aquaculture since the ban of malachite green. For the efficient characterization of anti-Saprolegnia therapeutics, simple accurate methods are required. However, the current screening methods are limited by time, and none of them are confirming the viability of treated spores or hyphae. In this study, a modified fluorescence-based assay for the in vitro screening of Saprolegnia inhibitors has been developed. This method involves the use of FUN-1 viability dye combined with calcofluor white M2R, and is based on the formation of orange-red cylindrical intravacuolar structures (CIVS) in metabolically active spores, hyphae and biofilms. Heat-killed and bronopol-treated Saprolegnia spores, hyphae and biofilms exhibited diffuse bright green fluorescence which confirms complete loss of viability. For boric acid-treated spores, no germination was observed. However, tiny CIVS were observed in 50% of treated spores which indicated reduction in their viability. Our results proved that FUN-1 dye is an efficient tool to distinguish between live and dead Saprolegnia spores, hyphae and biofilms and to monitor the change in Saprolegnia viability during qualitative evaluation of potential anti-Saprolegnia compounds.

Isolation, identification and pathogenicity of Vibrio harveyi, the causal agent of skin ulcer disease in juvenile hybrid groupers Epinephelus fuscoguttatus × Epinephelus lanceolatus

Published on 2/3/2017
The hybrid grouper, Epinephelus fuscoguttatus (♀) × Epinephelus lanceolatus (♂), is a newly bred cultivated marine fish species of high economic value. However, a skin ulcer disease with high mortality has occurred, and the responsible pathogen remains unknown. In this study, we summarized the epidemic status and external signs of this disease. We screened potential pathogens and finally isolated one bacterial strain ML01 from affected fish. We subjected healthy juvenile hybrid groupers to bacterial challenge tests with the isolate by immersion, immersion after dermal abrasion and intraperitoneal injection, respectively. Within 14 days post-infection, the isolate ML01 caused mass mortality of juveniles infected via immersion after dermal abrasion or intraperitoneal injection. Diseased juveniles displayed obvious signs of skin ulcers. The median lethal dose of ML01 by intraperitoneal injection was 1.10 × 105 colony-forming units. ML01 was identified as Vibrio harveyi by bacterial morphology, analytical profile index identification, 16S rDNA sequencing and multilocus sequence analysis. Antibiotic susceptibility tests showed that ML01 was sensitive to ceftriaxone, doxycycline and minocycline. The results of this study suggest that V. harveyi is the causal agent of skin ulcer disease in juvenile hybrid groupers, thus providing a basis for effective control and prevention of this disease.

Current knowledge of metabolomic approach in infectious fish disease studies

Published on 2/3/2017
The approaches of transcriptomic and proteomic have been widely used to study host–pathogen interactions in fish diseases, and this is comparable to the recently emerging application of metabolomic in elucidating disease-resistant mechanisms in fish that gives new insight into potential therapeutic strategies to improve fish health. Metabolomic is defined as the large-scale study of all metabolites within an organism and represents the frontline in the ‘omics’ approaches, providing direct information on the metabolic responses and perturbations in metabolic pathways. In this review, the current research in infectious fish diseases using metabolomic approach will be summarized. The metabolomic approach in economically important fish infected with viruses, bacteria and nematodes will also be discussed. The potential of the metabolomic approach for management of these infectious diseases as well as the challenges and the limitations of metabolomic in fish disease studies will be explored. Current review highlights the impacts of metabolomic studies in infectious fish diseases, which proposed the potential of new therapeutic strategies to enhance disease resistance in fish.

Isolation and characterization of an atypical Siberian sturgeon herpesvirus strain in Russia: novel North American Acipenserid herpesvirus 2 strain in Europe?

Published on 27/2/2017
Siberian sturgeon herpesvirus (SbSHV) was isolated in Russia for the first time in 2006. Nine SbSHV isolates were recovered from different fish hatcheries producing the same cytopathic effect in cell cultures, the same clinical signs and mortality kinetics in virus-infected fish and the same virus neutralization pattern and shared identical nucleotide sequences. In 2011, a new isolate was recovered from juvenile sturgeon, which caused completely different cytopathic effect. That isolate was not readily neutralized by Siberian sturgeon hyperimmune antisera, and its DNA was not recognized by the routine PCR developed for SbSHV detection. Molecular study of the novel isolate revealed that it was more closely related to North American Acipenserid herpesvirus 2 (AciHV-2) isolates from white sturgeon, while the genome sequences of the former SbSHV isolates showed high similarity to the AciHV-2 isolated from shortnose sturgeon. While clinical signs and mortality caused by the novel isolate in infected Siberian sturgeon were similar to those of the formerly described SbSHV isolates, the incubation period and mean time to death produced by the novel isolate were twice as long. The differences between the former isolates and the recent one suggest that a novel SbSHV strain emerged in Europe and the molecular findings imply its North American origin.

Water temperature and dietary histidine affect cataract formation in Atlantic salmon (Salmo salar L.) diploid and triploid yearling smolt

Published on 11/2/2017
The aim of the present study was to investigate cataract development in diploid (2N) and triploid (3N) Atlantic salmon smolts and post-smolts at two water temperatures (10 and 16 °C) given diets with different histidine supplementation (LH, 10.4 and HH, 13.1 g kg−1) before and after seawater transfer. In freshwater, a severe cataract outbreak was recorded in both ploidies reared at 16 °C. The cataract score was significantly higher in triploids compared to diploids, and the severity was lower in both ploidies fed the HH diet. The cataract development at 10 °C was minor. Low gill Na+, K+-ATPase activity in fish reared at 16 °C before seawater transfer was followed by osmoregulatory stress with elevated plasma electrolyte concentrations and high mortality in sea water. Both diploids and triploids reared at 10 °C developed cataracts during the seawater period, with higher severities in triploids than diploids and a reduced severity in the fish fed the HH diet. The findings of this study demonstrate the importance of environmental conditions in the husbandry of Atlantic salmon, and particularly triploids, with regard to smoltification and adjusted diets to mitigate cataract development in fresh and sea water.

In vivo adherence of Flavobacterium psychrophilum to mucosal external surfaces of rainbow trout (Oncorhynchus mykiss) fry

Published on 11/2/2017
The adherence of Flavobacterium psychrophilum to surfaces of epithelial tissues has been inconclusively suggested as a mechanism, which enables the bacterium to invade the host. Hence, the present study aimed to examine the adherence of the cells of two colony phenotypes, smooth and rough, of F. psychrophilum to mucosal tissues of rainbow trout fry and to test the skin mucus as a nutrient for the growth of F. psychrophilum. Fish were immersed in water containing 106 CFU mL−1 F. psychrophilum for each colony phenotype. Mucosal tissue samples from fins, gills, skin and eyes, and swab samples from spleen and kidney were taken and inoculated onto TYES agar plates. Colony phenotypes of F. psychrophilum were identified and number of colonies counted. The results showed that cells of both phenotypes initially (0 h) adhered to all mucosal surfaces, but only the rough cells were still present on tissues 1 h post-immersion. Both phenotypes showed a tissue tropism with the fin tissue being the most adhered. Furthermore, skin mucus promoted the growth of both colony phenotypes. We suggest that the growth of F. psychrophilum cells in skin mucus apparently facilitates the bacterial adherence to mucosal surfaces, and the subsequent invasion into the host.

A survey of microparasites present in adult migrating Chinook salmon (Oncorhynchus tshawytscha) in south-western British Columbia determined by high-throughput quantitative polymerase chain reaction

Published on 11/2/2017
Microparasites play an important role in the demography, ecology and evolution of Pacific salmonids. As salmon stocks continue to decline and the impacts of global climate change on fish populations become apparent, a greater understanding of microparasites in wild salmon populations is warranted. We used high-throughput, quantitative PCR (HT-qRT-PCR) to rapidly screen 82 adult Chinook salmon from five geographically or genetically distinct groups (mostly returning to tributaries of the Fraser River) for 45 microparasite taxa. We detected 20 microparasite species, four of which have not previously been documented in Chinook salmon, and four of which have not been previously detected in any salmonids in the Fraser River. Comparisons of microparasite load to blood plasma variables revealed some positive associations between Flavobacterium psychrophilum, Cryptobia salmositica and Ceratonova shasta and physiological indices suggestive of morbidity. We include a comparison of our findings for each microparasite taxa with previous knowledge of its distribution in British Columbia.

Comparative assessment of Vibrio virulence in marine fish larvae

Published on 4/2/2017
Vibrionaceae infections are a major obstacle for marine larviculture; however, little is known about virulence differences of Vibrio strains. The virulence of Vibrio strains, mostly isolated from vibriosis outbreaks in farmed fish, was tested in larval challenge trials with cod (Gadus morhua), turbot (Scophthalmus maximus) and halibut (Hippoglossus hippoglossus) using a multiwell dish assays with single-egg/larvae cultures. The strains differed significantly in virulence as some caused a high mortality of larva reaching 100% mortality after a few days, while others had no or only marginal effects on survival. Some Vibrio strains were pathogenic in all of the larva species, while some caused disease only in one of the species. Twenty-nine of the Vibrio anguillarum strains increased the mortality of larvae from at least one fish species; however, pathogenicity of the strains differed markedly. Other Vibrio species had no or less pronounced effects on larval mortalities. Iron uptake has been related to V. anguillarum virulence; however, the presence or absence of the plasmid pJM1 encoding anguibactin did not correlate with virulence. The genomes of V. anguillarum were compared (D. Castillo, P.W. D'Alvise, M. Middelboe & L. Gram, unpublished data) and most of the high-virulent strains had acquired virulence genes from other pathogenic Vibrio.

Identification of genomic islands in Chilean Piscirickettsia salmonis strains and analysis of gene expression involved in virulence

Published on 2/2/2017
Piscirickettsia salmonis, an agent of Piscirickettsiosis, is the cause of major losses in the Chilean salmon industry. We identified, characterized and bioinformatically analysed genomic islands in field strains of P. Salmonis, using the bioinformatic software PIPS, that uses the characteristics of the islands of pathogenicity to identify them. We analysed nine partially sequenced genomes in different new field strains, and compared them with the LF-89 (Type strain) genome, selecting a genomic island present in all of them. We then evaluated the relative expression of three genes present in that island. From the obtained results, we conclude that the expression of the tcf gene is directly proportional to the cytopathogenicity in vitro of the bacteria; the product of the dnsa gene could contribute to its pathogenicity, but would be potentiated by one or more factors. The product of the gene liso is necessary for the virulence process and could have functions in early stages of infection. Regarding the strains, the IBM-040 strain showed a significant increase in the expression of all the genes in the study. Contrarily, LF-89 only presented a significant increase in expression of the gene liso, which correlates with the cytopathogenicity in vitro observed in the SHK-1 cells.

Age dependency of nervous necrosis virus infection in barramundi Lates calcarifer (Bloch)

Published on 24/1/2017
Age-dependent susceptibility to nervous necrosis virus (NNV) was demonstrated for barramundi (Lates calcarifer). The experiment used juvenile barramundi produced from a single spawning that were challenged consecutively by immersion with a redspotted grouper nervous necrosis virus (RGNNV) isolate. The dose and environmental conditions (35 ppt salinity and 30 °C) were constant. Fish and water were sampled longitudinally for histopathology and RT-qPCR analysis to examine the evolution of the disease, virus replication, immune response and release of virus into water. Viral nervous necrosis (VNN) disease occurred in barramundi challenged at 3 and 4 weeks of age while fish challenged at 5, 7 and 9 weeks of age developed subclinical infection. Replication of NNV occurred faster and the concentration of virus reached higher concentrations in the younger fish with clinical disease. Virus isolation and qPCR tests indicated that infectious NNV was released from carcasses into water when fish were affected with clinical disease but not when NNV infection was subclinical. Based on these observations, we consider that carcasses from clinically infected fish have a potentially important role in the horizontal transmission of NNV, and barramundi juveniles should be protected from exposure to NNV until they are 5 weeks of age and reach the disease resistance threshold.

Outbreaks of ulcerative disease associated with ranavirus infection in barcoo grunter, Scortum barcoo (McCulloch & Waite)

Published on 23/1/2017
In 2013, an outbreak of ulcerative disease associated with ranavirus infection occurred in barcoo grunter, Scortum barcoo (McCulloch & Waite), farms in Thailand. Affected fish exhibited extensive haemorrhage and ulceration on skin and muscle. Microscopically, the widespread haemorrhagic ulceration and necrosis were noted in gill, spleen and kidney with the presence of intracytoplasmic eosinophilic inclusion bodies. When healthy barcoo grunter were experimentally challenged via intraperitoneal and oral modes with homogenized tissue of naturally infected fish, gross and microscopic lesions occurred with a cumulative mortality of 70–90%. Both naturally and experimentally infected fish yielded positive results to the ranavirus-specific PCR. The full-length nucleotide sequences of major capsid protein gene of ranaviral isolates were similar to largemouth bass virus (LMBV) and identical to largemouth bass ulcerative syndrome virus (LBUSV), previously reported in farmed largemouth bass (Micropterus salmoides L.), which also produced lethal ulcerative skin lesions. To the best of our knowledge, this is the first report of a LMBV-like infection associated with skin lesions in barcoo grunter, adding to the known examples of ranavirus infection associated with skin ulceration in fish.

Phylogenetic analysis of the fish pathogen Aeromonas salmonicida underlines the dichotomy between European and Canadian strains for the salmonicida subspecies

Published on 20/1/2017

Gyrodactylus salmonis infection impairs the olfactory system of rainbow trout

Published on 20/1/2017
Monogenean worms are ectoparasites that are known to be infectious to a wide variety of fish. Few species of monogenean parasites have been reported in the olfactory chamber of fish in current peer-reviewed literature. However, the impacts of these parasites on the olfactory system are not well understood. In this study, the effects of Gyrodactylus salmonis on the olfactory system structure and performance were investigated in rainbow trout (Oncorhynchus mykiss). The olfactory performance of the infected fish was examined using an electro-olfactography (EOG) technique, while the ultrastructure of the olfactory rosette was studied using scanning electron microscopy (SEM) and light microscopy (LM). The infected rainbow trout displayed reduced responses to two standard olfactory cues (L-alanine and TCA). The SEM micrographs revealed that many regions of the olfactory epithelium in the infected fish were heavily pitted and the LM examination of the olfactory epithelium showed local proliferation of mucous cells in the sensory regions as compared to the control group. The results of this study demonstrated that G. salmonis causes physical damage to the olfactory system of fish that lead to olfactory impairment.

Salmon gill poxvirus, a recently characterized infectious agent of multifactorial gill disease in freshwater- and seawater-reared Atlantic salmon

Published on 20/1/2017
Gill diseases cause considerable losses in Norwegian salmon farming. In 2015, we characterized salmon gill poxvirus (SGPV) and associated gill disease. Using newly developed diagnostic tools, we show here that SGPV infection is more widely distributed than previously assumed. We present seven cases of complex gill disease in Atlantic salmon farmed in seawater and freshwater from different parts of Norway. Apoptosis, the hallmark of acute SGPV infection, was not easily observed in these cases, and qPCR analysis was critical for identification of the presence of SGPV. Several other agents including Costia-like parasites, gill amoebas, Saprolegnia spp. and bacteria were observed. The studied populations experienced significant mortalities, which increased to extreme levels when severe SGPV infections coincided with smoltification. SGPV infection appears to affect the smoltification process directly by affecting the gills and chloride cells in particular. SGPV may be considered a primary pathogen as it was often found prior to identification of complex gill disease. It is hypothesized that SGPV-induced gill damage may impair innate immunity and allow invasion of secondary invaders. The distinct possibility that SGPV has been widely overlooked as a primary pathogen calls for extended use of SGPV qPCR in Atlantic salmon gill health management.

Are hybrids between Atlantic salmon and brown trout suitable long-term hosts of Gyrodactylus salaris during winter?

Published on 20/1/2017
The monogenean parasite Gyrodactylus salaris poses serious threats to many Atlantic salmon populations and presents many conservation and management questions/foci and challenges. It is therefore critical to identify potential vectors for infection. To test whether hybrids of native Atlantic salmon (Salmo salar) × brown trout (Salmo trutta) are suitable as reservoir hosts for G. salaris during winter, infected hybrid parr were released into a natural subarctic brook in the autumn. Six months later, 23.9% of the pit-tagged fish were recaptured. During the experimental period, the hybrids had a sixfold increase in mean intensity of G. salaris, while the prevalence decreased from 81% to 35%. There was high interindividual hybrid variability in susceptibility to infections. The maximum infrapopulation growth rate (0.018 day−1) of G. salaris throughout the winter was comparable to earlier laboratory experiments at similar temperatures. The results confirm that infrapopulations of G. salaris may reproduce on a hybrid population for several generations at low water temperatures (~1 °C). Wild salmon–trout hybrids are undoubtedly susceptible to G. salaris and represent an important reservoir host for the parasite independent of other co-occurring susceptible hosts. Consequently, these hybrids may pose a serious risk for G. salaris transmission to nearby, uninfected rivers by migratory individuals.

Cartilage in the bulbus arteriosus of farmed Atlantic salmon (Salmo salar L.)

Published on 20/1/2017

Mortality event involving larvae of the carpet shell clam Ruditapes decussatus in a hatchery: isolation of the pathogen Vibrio tubiashii subsp. europaeus

Published on 17/1/2017
Diseases caused by bacteria belonging to the genus Vibrio are a common, as yet unresolved, cause of mortality in shellfish hatcheries. In this study, we report the results of routine microbiological monitoring of larval cultures of the carpet shell clam Ruditapes decussatus in a hatchery in Galicia (NW Spain). Previous episodes of mortality with signs similar to those of vibriosis affecting other species in the installation indicated the possibility of bacterial infection and led to division of the culture at the early D-veliger larval stage. One batch was cultured under routine conditions, and the other was experimentally treated with antibiotic (chloramphenicol). Differences in larval survival were assessed, and culturable bacterial population in clams and sea water was evaluated, with particular attention given to vibrios. Severe mortalities were recorded from the first stages of culture onwards. The pathogen Vibrio tubiashii subsp. europaeus was detected in both batches, mainly associated with larvae. Moreover, initial detection of the pathogen in the eggs suggested the vertical transmission from broodstock as a possible source. Experimental use of antibiotic reduced the presence and diversity of vibrios in sea water, but proved inefficient in controlling vibrios associated with larvae from early stages and it did not stop mortalities.

Share this page!

bookmark at: Twitter bookmark at: Facebook bookmark at: Del.icio.us bookmark at: Digg bookmark at: Reddit bookmark at: Yahoo bookmark at: Google

Recommend us!